

Rev.1.0

S1C17702
Self-Modifying

Programming (FLS)
Application Note

Use the downloaded compressed file following the instructions provided in NOTICE_Application Notes
Sample Programs. pdf included.

NOTICE
No part of this material may be reproduced or duplicated in any form or by any means without the written
permission of Seiko Epson. Seiko Epson reserves the right to make changes to this material without notice.
Seiko Epson does not assume any liability of any kind arising out of any inaccuracies contained in this material
or due to its application or use in any product or circuit and, further, there is no representation that this material
is applicable to products requiring high level reliability, such as, medical products. Moreover, no license to
any intellectual property rights is granted by implication or otherwise, and there is no representation or warranty
that anything made in accordance with this material will be free from any patent or copyright infringement of a
third party. This material or portions thereof may contain technology or the subject relating to strategic
products under the control of the Foreign Exchange and Foreign Trade Law of Japan and may require an export
license from the Ministry of Economy, Trade and Industry or other approval from another government agency.

All other product names mentioned herein are trademarks and/or registered trademarks of their respective
companies.

©SEIKO EPSON CORPORATION 2009, All rights reserved.

OVERVIEW

This document is a reference material to be consulted when implementing the self-modifying programming in

an application program, using the FLS17702 flash memory data erase and write program included in the
S1C17702 module.

OPERATING ENVIRONMENTS

 PC

GNU17 (S5U1C17001C) development tool must be installed.*
ICDmini USB driver must be installed.

 ICDmini (S5U1C17001H)
A USB cable is required for connection with the PC.

 Target CPU board
The dedicate cable (4-pin to 4-pin) is required for connection with the ICDmini.

 S1C17702 self-modifying programming package (This package)

* This package has been checked for its normal operation in GNU17 v.1.5.0 environment.
* The SVT17702 (S5U1C17702T1100) board can be used as an alternative to the ICDmini/target CPU

board.

S1C17702 Self-Modifying Programming (FLS) EPSON i
Application Note (Rev.1.0)

Table of Contents

1. SPECIFICATIONS...1

2. FLASH MEMORY SPECIFICATIONS ...2
2.1 Flash Memory Control ..3
2.2 Functional Description ...3
2.3 Usage ...4

3. SOFTWARE DESCRIPTION ...8
3.1 Folder configuration ...8
3.2 File Configuration ...8
3.3 Global Variable..9
3.4 Control registers ...9
3.5 Error Code Definition..9
3.6 Detailed Description of Flash Memory Data Erase/Write Driver ...10
3.7 Header Definitions ..19
<APPENDIX 1> Sample Program...19
<APPENDIX 2> How to Debug the Sector Erase ..22

REVISION HISTORY...23

1. SPECIFICATIONS

S1C17702 Self-Modifying Programming (FLS) EPSON 1
Application Note (Rev.1.0)

1. SPECIFICATIONS

The S1C17702 self-modifying programming package provides a program library to modify program codes

and data in the flash memory included in the S1C17702 module. Flash memory data erase and write processes
can be executed by function calls from an application program after linking this object to the application
program.

The following illustrates the connection required for operation.

 CPU Board

4pin - 4pin
Cable

GNU17

Self-modifying
programming package

PC

ICDmini

 USB cable

2. FLASH MEMORY SPECIFICATIONS

2 EPSON S1C17702 Self-Modifying Programming (FLS)
Application Note (Rev.1.0)

2. FLASH MEMORY SPECIFICATIONS

The following describes configuration of the flash memory included in the S1C17702 module.

・ The number of sectors : 32 sectors
・ Memory capacity : 128K bytes
・ Data erase unit : Chip or sector
・ Data write unit : Word (16-bit)
・ Read cycle : 1 to 5 cycles *1
・ Operating voltage *2 : Read 1.8V to 3.6 V

 Erase/write 2.7 V to 3.6 V

*1: Set an appropriate data read cycle of the flash memory according to the CPU clock speed.

For detailed settings, see the relative section of the “S1C17702 Technical Manual”.

*2: The operating voltage for the flash memory is generated by controlling the internal voltage circuit

with software. Set the appropriate values for VDD and internal operating voltage VD1 according to the
following operating modes.
For details of the operating voltage for each mode, see the relative section of the “S1C17702
Technical Manual”.

1. Normal Operating mode
 A normal mode to run an application program.
 VDD = 1.8 to 3.6 V, and internal operating voltage VD1 = 1.8V

2. Flash Memory Erase/Write mode
 An operating mode to erase flash memory data or write program/data to the flash memory.
 VDD = 2.7 to 3.6 V, and internal operating voltage VD1 = 2.5V

Relation between S1C17702 Memory Addresses and Flash Memory Sectors

S1C17702 address Flash memory sector No. S1C17702 address Flash memory sector No.
0x17000~0x17fff 15 0x27000~0x27fff 31
0x17000~0x17fff 14 0x27000~0x27fff 30
0x17000~ 0x17fff 13 0x27000~0x27fff 29
0x17000~0x17fff 12 0x27000~0x27fff 28
0x17000~0x17fff 11 0x27000~0x27fff 27
0x17000~0x17fff 10 0x27000~0x27fff 26
0x17000~0x17fff 9 0x17000~0x17fff 25
0x10000~0x10fff 8 0x20000~0x20fff 24
0x0f000~0x0ffff 7 0x1f000~0x1ffff 23
0x0e000~0x0efff 6 0x1e000~0x1efff 22
0x0d000~0x0dfff 5 0x1d000~0x1dfff 21
0x0c000~0x0cfff 4 0x1c000~0x1cfff 20
0x0b000~0x0bfff 3 0x1b000~0x1bfff 19
0x0a000~0x0afff 2 0x1a000~0x1afff 18
0x09000~0x09fff 1 0x19000~0x19fff 17
0x08000~0x08fff 0 0x18000~0x18fff 16

2. FLASH MEMORY SPECIFICATIONS

S1C17702 Self-Modifying Programming (FLS) EPSON 3
Application Note (Rev.1.0)

2.1 Flash Memory Control

The S1C17702 built-in flash memory starts data erasing or writing by issuing the data erase or write

command to the flash memory, respectively. The following lists the flash memory commands.

Flash Memory Command List

Bus cycle
1st 2nd 3rd 4th 5th 6th Command

addr Data addr Data addr Data addr Data addr Data addr Data
Read RA RD

Chip erase 555h AAh 2AAh 55h 555h 80h 555h AAh 2AAh 55h 555h 10h
Sector erase 555h AAh 2AAh 55h 555h 80h 555h AAh 2AAh 55h SA 30h

Write 555h AAh 2AAh 55h 555h A0h PA PD
Notes: A10 to A0 (hex) are command addresses. A14 to A11 must be set to Low or High.

D7 to D0 (hex) are command data. D15 to D8 must be set to Low or High.

X = High or Low
RA = Read address
RD = Read data
PA = Write address
PD = Write data
SA = Sector address

2.2 Functional Description

The following functions are provided by this program library.

Flash memory erase function:
flash_erase(unsigned long ulCtrlReg, unsigned char ulStart, unsigned char ulEnd);

This function erases S1C17602 built-in flash memory data by the chip or the sector based on the
specified start address, data erase start sector, and data erase end sector.
For the data erase sectors, 0 to 32 can be specified.
Notes) The “0” sector denotes the chip erase.

Flash memory write function:
flash_load (unsigned long ulProgAddr, unsigned long ulSize, unsigned char* pData);

This function writes memory data to flash memory based on the specified pointers to the data write
address, the write data size, and the write data.
Notes: The effective range of the write data size is NOT checked in this library.

<Notes on this package>

1. This is the dedicate package to the S1C17702 module.
2. This package has been created for program development using the GNU17 (S5U1C17001C).
3. The verify function is included in the flash memory erase/write functions.

2. FLASH MEMORY SPECIFICATIONS

4 EPSON S1C17702 Self-Modifying Programming (FLS)
Application Note (Rev.1.0)

2.3 Usage

The following describes how to use the program library of this package.

1. Adding the library and header file

Import the “lib” folder in the package to the project folder.
Instead of it, you may import the source file to the project folder.

2. FLASH MEMORY SPECIFICATIONS

S1C17702 Self-Modifying Programming (FLS) EPSON 5
Application Note (Rev.1.0)

2. Adding the library
To use the imported library, add it to library setting.
Select [Properties]-[GNU17 Build Options]-[Linker]-[Libraries] of the project, choose the red bullet
shown in the following figure, and add the “fl_17702def.o,” “fl_17702.o,” and “fl_17702exe.o” from the
“lib” folder to the project.
Notes) This step is not required if the source file is imported instead of the program library.

3. Setting the include path
 To use “fl_self.h” in the “lib” folder, set the include path.

Select [Properties]-[GNU17 Build Options]-[Directories] of the project, choose the red bullet shown in
the following figure, and set the include path to the “lib” folder in the project.
Notes) The include path does not need to be specified directly in the source file.

2. FLASH MEMORY SPECIFICATIONS

6 EPSON S1C17702 Self-Modifying Programming (FLS)
Application Note (Rev.1.0)

4. Setting the linker scripts
 Set the linker to the imported library.

Select [Properties]-[GNU17 Linker Script Settings] of the project, choose the red bullet shown in the
following figure, and add the section where the library is placed.

Bestow any name starting with “ .” on the section to be added, and place “fl_17702exe.o”.
Because “fl_17702exe.o”, a library issuing control commands to the flash memory, needs to be executed
in the built-in RAM, place its execution address (VMA) in the built-in RAM.

* This example creates a section called “.fls”, where this library is placed. The actual data (LMA) is
placed on the flash memory, and execution address (VMA) is on the RAM, both are after the “.data”
section.

* “fl_17702def.o” and “fl_17702.o” need not to be placed on the RAM.

2. FLASH MEMORY SPECIFICATIONS

S1C17702 Self-Modifying Programming (FLS) EPSON 7
Application Note (Rev.1.0)

5. Declaring the header file
Declare to include the “fl_self.h” file into the source file that uses this library.
Note) If the include path has not been set, specify the path to include.

6. Adding the copy codes to the built-in RAM

Add the following code to the application program so that the library is copied to the area being set by the
linker script before this library is executed in the application program.

7. Adding the flash memory erase/write execution codes

Add the following codes to the application program so that the library function is called within the
application program and that data is written or erased to/from the flash memory.

3. SOFTWARE DESCRIPTION

8 EPSON S1C17702 Self-Modifying Programming (FLS)
Application Note (Rev.1.0)

<Usage notes>
 Be sure to copy fl_17702exe.o into the built-in RAM, and execute it from the built-in RAM.
 The sector erase of flash memory data cannot be executed from the GDB.
 This library uses 316 bytes of built-in RAM area for the library and 92 bytes for stacks.

Do not destroy the library placement area during library execution.
 Consider the rewritable count of the flash memory when using this library.

For specifications of the flash memory, see the relative section of the “S1C17702 Technical Manual”.
 Set power voltage and internal operating voltage to the appropriate values prior to the flash memory data
erase or write.
For detailed settings, see the relative section of the “S1C17702 Technical Manual”.
Because this program library sets internal operating voltage within the library, it does not needs to be
changed in the source codes.

3. SOFTWARE DESCRIPTION

3.1 Folder configuration

This package has the following folder configuration.

+self_fls17702
+lib : self programming library
+src : self programming GNU17 project
+c17702_sample : sample program for self programming

3.2 File Configuration

This package has the following file configuration.

Self_fls17702/lib
File name Description

fl_17702.o S1C17702 flash memory erase/write library
fl_17702def.o S1C17702 address information table definition library
fl_17702exe.o S1C17702 flash memory command control library
fl_self.h Function library declaration header file

self_fls17602/src
File name Description

fl_17702.c S1C17702 flash memory erase/write program
fl_17702def.c S1C17702 address information table definition
fl_17702exe.c S1C17702 flash memory command control program
fl_17702.h S1C17702 FLS program header definition
s1c17702.h S1C17702 standard I/O definition file
fls17702_self _gnu17IDE.lds Linker script file
fls17702_self _gnu17IDE.cmd GDB command file
fls17702_self_gnu17IDE.par Parameter configuration file
fls17702_self _gnu17IDE.mak Make file
.cdtproject Project file
.gnu17project Project file
.project Project file
GDB17 Launch for fls17702_self.launch Project startup file

3. SOFTWARE DESCRIPTION

S1C17702 Self-Modifying Programming (FLS) EPSON 9
Application Note (Rev.1.0)

3.3 Global Variable

The following lists the global variables used in this library.

Variable name Type Description

flsCtrlReg unsigned long
An array to store the start address of the flash
memory

ulSector[] unsigned long An array to store the start address of each sector

3.4 Control registers

The following shows the control register used in this library, settings based on the description of “S1C17702

Technical Manual”.

Address Description Settings

0x5120 (B) VD1 Control Register

D7-D-5:Reserved
D4: Sets the internal constant-voltage heavy
load protection mode.

1: On 0: Off
D3-D-1:Reserved
D0: Sets the internal operating voltage.

1: Flash (2.5 V) 0: Normal(1.8 V)

3.5 Error Code Definition

Definition name Value Description
FLS_E_SUCCESS 0 Successful flash memory operation (Normal termination)

FLS_E_VERIFY 1

Verify error
This error code is returned if data is read from the specified address during the
flash memory data write or erase and if the read data does not match the
specified data.
Upon the flash memory data erase, the specified address data is checked if it is
0xFFFF or not.

FLS_E_PARAM1 3
Out of range for data erase start sector

This error code is returned if the data erase end sector number is negative or if
it has exceeded the maximum number of sectors.

FLS_E_PARAM2 4
Out of range for data erase end sector

This error code is returned if the data erase end sector number is negative or if
it has exceeded the maximum number of sectors.

FLS_E_REGERR 6
Sector boundary error

This error code is returned if the flash memory start address is not on the sector
boundary.

3. SOFTWARE DESCRIPTION

10 EPSON S1C17702 Self-Modifying Programming (FLS)
Application Note (Rev.1.0)

3.6 Detailed Description of Flash Memory Data Erase/Write Driver

The following describes the functions included in fl_17702.o (fl_17702.c).

Flash Memory Erase

Function name
flash_erase(unsigned long ulCtrlReg, unsigned char ulStart, unsigned char ulEnd);
Arguments
ulCtrlReg unsigned long Specifies the start address of the flash memory.
ucStart unsigned char Specifies the data erase start sector of the flash memory.
ucEnd unsigned char Specifies the data erase end sector of the flash memory.
Return value
int Indicates the result (an error code) of data erase from flash memory.
Description
This function erases flash memory data as specified by the parameters.
Data is erased from the flash memory in the following steps.
(1) Checks the parameters of the flash memory start address, data erase start sector, and the data erase end sector.
(2) Switches the internal operating voltage to the Flash Programming mode.
(3) Passes the data erase start address and the entire erase decision flag to the chip_erase function, and erases the

flash memory data.
(4) Checks to see whether the specified sector has been erased.
(5) Switches the internal operating voltage to the Normal mode.
(6) Returns the result of the erase.
Remarks
The sector erase must be specified in the format of “specified sector number plus 1” because logical 0 indicates the
chip erase.

3. SOFTWARE DESCRIPTION

S1C17702 Self-Modifying Programming (FLS) EPSON 11
Application Note (Rev.1.0)

Flowchart of Flash Memory Erase

Issue the data erase
command
chip_erase

Issue the data erase
command

chip_erase

Set the erase sector address

Set the process result
in the return value

START

Set the normal termination
in the return value

Abnormal end due to address
boundary error

Abnormal end due to sector
parameter error 1

Abnormal end due to sector
parameter error 2

Is the start address
on sector

boundary?

Is start sector within
the range?

Is end sector within
the range?

Chip erase?

Yes

Yes

Yes

No

No

No

Yes

No

END

Switch the internal
operating voltage to the

Flash Memory mode

Switch the internal
operating voltage to the

Flash Memory
modevoltage_down

Check the erase result

3. SOFTWARE DESCRIPTION

12 EPSON S1C17702 Self-Modifying Programming (FLS)
Application Note (Rev.1.0)

Issue of Flash Memory Erase Command

Function name
int chip_erase (unsigned long ulAddr, unsigned char ucMode);
Arguments
ulAddr unsigned long Specifies the data erase start address of the flash memory.

ucMode unsigned char
Selects the flash memory data erase mode.

1:Chip erase 2:Sector erase
Return value
Int Returns the verify result (an error code) of the flash memory data erase.
Description
This function erases data in the specified address (or sector) according to the command sequence of the flash
memory.
The command is issued and data is erased from flash memory in the following steps.
(1) Issues the data erase command (common to chip and sector data erase) to the flash memory.
(2) Issues the data erase command in the erase mode that has been passed from the flash_erase function.

1:Chip eras 2:Sector erase
(3) Checks to see if the data has been erased normally, and returns the verify result.
Remarks
To erase multiple sectors of data, you need to change the erase start address and call the function multiple times.

Flowchart of the Issue of Flash Memory Erase Command

START

Issue the chip erase
command

Issue the sector
erase command

Chip erase?

Yes

No

END

Set the process result
in the return value

Issue the flash memory
data erase command

Verify
flsVerifyCheck

3. SOFTWARE DESCRIPTION

S1C17702 Self-Modifying Programming (FLS) EPSON 13
Application Note (Rev.1.0)

Flash Memory Write

Function name
int flash_load (unsigned long ulProgAddr, unsigned long ulSize, unsigned char* pData);
Arguments
ulProgAddr unsigned long Specifies the destination address for data writing.
ulSize unsigned long Specifies the size for data writing.
pData unsigned char* Specifies the pointer to the write data.
Return value
int Indicates the result (an error code) of flash memory data write.
Description
This function writes data in flash memory as specified by the parameters.
Data is written in the flash memory in the following steps.
(1) Switches the internal operating voltage to the Flash Programming mode.
(2) Create a write data (half-word data) based on the passed parameters.
(3) Checks to see if the destination address is write-enabled or not.
(4) Passes the write address and data to the emb_program function, and writes data in the flash memory.
(5) Checks to see if the data has been written normally or not.
(6) Repeats operations from Step (2) to Step (5) for the specified size of write data.
(7) Switches the internal operating voltage back to the Normal mode.
(8) Return the data write result.
Remarks
None

3. SOFTWARE DESCRIPTION

14 EPSON S1C17702 Self-Modifying Programming (FLS)
Application Note (Rev.1.0)

Flowchart of Flash Memory Write

Start

Set the normal
termination in the return

value

Does the specified size of data
have been written?

 write address==
odd number?

Decrement the data
write address

Read the write address
data

Write data (HW) =
Write data (H) | Read data (L)

Increment the write
data size

Is the write data size
equal to the remaining 1

byte?

Read the write address
data

Write data (HW) =
Read data (H) | Write data (L)

Increment the write
data size

Write data (HW) =
Read data (H) | Write data (L)

Increment the write
data size + 2

1

Yes

No

No

No
Yes

Yes

END

2

Switch the internal operating
voltage to the Flash Memory

mode
voltage_up

Switch the internal operating
voltage to the Normal mode

voltage_down
3

3. SOFTWARE DESCRIPTION

S1C17702 Self-Modifying Programming (FLS) EPSON 15
Application Note (Rev.1.0)

Flowchart of Flash Memory Write

Write data = FFFFh?

Read data = write-
enabled (FF)?

Issue the data write
command

emb_program

Normal end?

Increment the write
address + 2

Yes

No

No

Yes

1

Read the write
address data

Set the verify error
value

2

Yes

No

3

Set the verify error
value

3

3. SOFTWARE DESCRIPTION

16 EPSON S1C17702 Self-Modifying Programming (FLS)
Application Note (Rev.1.0)

Issue of Flash Memory Write Command

Function name
Int emb_program(unsigned long ulProgAddr, unsigned short usWrtData)
Arguments
ulProgAddr unsigned long Specifies the data write address.
usWrtData unsigned short Specifies the write data.
Return value
Int Returns the verify result (an error code) of the flash memory data erase.
Description
This function writes data in the specified addresses by following the command sequence of flash memory.
(1) Issues the data write command to the flash memory.
(2) Writes the word data in the specified write address.
(3) Checks to see if the data has been written normally, and returns the verify result.
Remarks
None

Flowchart of the Issue of Flash Memory Write Command

START

Issue the flash memory
write command

END

Verify
flsVerifyCheck

Set the process result in
the return value

Write data in the specified
write address

3. SOFTWARE DESCRIPTION

S1C17702 Self-Modifying Programming (FLS) EPSON 17
Application Note (Rev.1.0)

Flash Memory Data Read

Function name
unsigned short dq_poll(unsigned long ulAddr)
Arguments
ulAddr unsigned long Specifies the flash memory address.
Return value
short Data of “ulAddr” address
Description
This function reads word data from the specified flash memory address.
Remarks
None

Flowchart of Flash Memory Data Read

START

Read the half-word data from the
specified address

Set the read data in the
return value

END

Verify Check

Function name
int flsVerifyCheck(unsigned long ulChkAddr, unsigned short usChkData)
Arguments
ulChkAddr unsigned long Specifies the check address.
usChkData unsigned short Specifies the check data.
Return value

int
Indicates the verify result.
0:Normal 1:Verify error

Description
This function verifies if flash memory data has been erased or written normally.
The flash memory is verified and checked in the following steps.
(1) Checks the process termination using the toggle bit function.
(2) Compares and checks if the data read from the check address matches the check data or not.
(3) Returns the check result.
Remarks
The toggle bit function outputs logical 0 and 1 bits alternately each time data is erased or written.
When the data has been erased or written, the toggle output is stopped, indicating the completion of data erase or
write.

3. SOFTWARE DESCRIPTION

18 EPSON S1C17702 Self-Modifying Programming (FLS)
Application Note (Rev.1.0)

Flowchart of Verify Check

START

Read the toggle bits
dq_poll

Read value ==
previous read value?

Set the read value in the
variable

Read data from the check
address

dq_POLL

Read value ==
write data?

Abnormal end due to verify
error
END

Set the process result in the
return value

END

Set the normal termination in
the return value

Yes

No

Yes

No

3. SOFTWARE DESCRIPTION

S1C17702 Self-Modifying Programming (FLS) EPSON 19
Application Note (Rev.1.0)

3.7 Header Definitions

The following lists the “define” values used in this library.

Definition name Value Description
FLASH_COM1_ADDR 0x555 << 1 Flash memory command address 1
FLASH_COM2_ADDR 0x2aa << 1 Flash memory command address 2
FLASH_ERASE1 0xaa Flash memory erase command 1
FLASH_ERASE2 0x55 Flash memory erase command 2
FLASH_ERASE3 0x80 Flash memory erase command 3
FLASH_ERASE4 0xaa Flash memory erase command 4
FLASH_ERASE5 0x55 Flash memory erase command 5
FLASH_ERASE6 0x10 Flash memory erase command 6 (Chip erase)
FLASH_ERASE6_S 0x30 Flash memory erase command 6 (Sector erase)
FLASH_PROG1 0xaa Flash memory write command 1
FLASH_PROG2 0x55 Flash memory write command 2
FLASH_PROG3 0xa0 Flash memory write command 3
FLS_B_DQ6 0x0040 Flash memory data bit 6
FLS_E_SUCCESS 0 Successful flash memory operation (Normal termination)
FLS_E_VERIFY 1 Verify error
FLS_E_PARAM1 3 An erase start sector error
FLS_E_PARAM2 4 An erase end sector error
FLS_E_REGERR 6 Address boundary error
FLS_SCTSIZE 4096 Byte count per sector
FLS_SCTMAX 129 S1C17702 built-in flash memory sector count
FLS_TOPADDR 0x8000 S1C17702 built-in flash memory start address
FLS_INIDAT 0xffff Flash memory initial data value
FLS_FILL_L 0x00ff Half-word, low-order byte mask
FLS_FILL_H 0xff00 Half-word, high-order byte mask
SOFT_WAIT 3000 Internal operating voltage stabilization waiting
VD1_CTL 0x5120 Internal operating voltage control register
VD1_CTL_VD1MD 0x01 Internal operating voltage mode select bit

<APPENDIX 1> Sample Program

This package contains a sample program that uses the self-modifying programming technique.

<File configuration>
The following shows the configuration of sample program files.
+ c17702_sample

+ lib : self programming library folder
fl_self.h : self programming header file
fl_17702.o : self programming main program file
fl_17702exe.o : self programming control program file
fl_17702def.o : flash memory sector definition file

+ lcd : lcd sample driver folder
lcd.c : lcd driver program file
lcd.h : lcd driver header file
pw_booster_wait.s : wait program for lcd

boot.c : boot program file
main.c : main program file
init.c : init program file
init.c : init header file
data.c : lcd data file
update.c : lcd update data file
s1c17702.h : s1c17702 header file

3. SOFTWARE DESCRIPTION

20 EPSON S1C17702 Self-Modifying Programming (FLS)
Application Note (Rev.1.0)

<Outline of sample program>
The sample program modifies the LCD display data declared by “const” into the data placed in the RAM.
First, the program displays the data written in the flash memory on the LCD panel. (See the left figure shown
below)
When a certain time has passed, the self-modifying starts and the program modifies the data placed in the
RAM into the flash memory data. Finally, the data modified by the self-modifying process is displayed on the
LCD panel as shown below.

Before self-modifying process After self-modifying process

<Memory placement>
The following shows the linker script setting (memory placement) of the sample program.

The following shows the definition of each section.
(1) “.fls” section (Self-modifying programming library)

Attributes : text
Place file : fl_17702exe.o

This section includes the library that issues control commands to the flash memory.
The actual data of the library needs to be copied to this area before the self-modifying starts.

(2) “.lcd_after” section (Display data for updating)
Attributes : rodata
Place file : update.o

This section contains the display data for updating, and it is placed in the built-in flash memory (10000h).
Data is written in the flash memory by self-modifying of this section data.

(3) “.lcd_before” section (Display data)
Attributes : rodata
Place file : main.o

This section contains the data initially displayed on the LCD panel.
The data is modified into the display data for updating by the self-modifying process.

(1)

(2)
(3)

3. SOFTWARE DESCRIPTION

S1C17702 Self-Modifying Programming (FLS) EPSON 21
Application Note (Rev.1.0)

<Library specifications>
The following lists the specifications of the library to be executed by the sample program.

Flash memory erase (flash_erase)

Flash memory start address Data erase start sector Data erase end sector
0x8000 3 (0xB000 to) 3 (to 0xBFFF)
* For the sector number to be set in the flash memory data erase parameter, an actual sector number plus 1

is specified.

Modified data address Modified data size Modified data
0xB000 56 updateLineBit[56](0x0 - 0xFF)

Operation outline:
The following outlines the sample program operations.

(1) Copies the self-modifying library to the built-in RAM.
(boot.c / copyLmaToVma)
(2) Initializes the LCD.

(main.c / initLcdPower, startLcdClk, initLcd,reverseLcdCom, lcdOn, clearLine)
(3) Displays the data currently written in address B000h on the LCD panel. (See the left figure shown

above)
(main.c / drawLine)
(4) Erases sector 3 (addresses B000h to BFFFh) of the built-in flash memory.

(update.c / flash_erase)
(5) Writes the 56-byte “updateLineBit” display data for updating to address B000h.

(update.c / flash_load)
(6) Displays the data written in address B000h on the LCD panel again. (See the right figure shown

above)
However, if an error has occurred, the above process is not executed.
(main.c / drawLine)

<Execution procedure>

1. Import a project
Start the IDE and import the “sample” project.
* For the importing procedure, see the relative section of the “S5U1C17001C Manual”.

2. Building
Build the “sample” project by using the IDE.
* For the build procedure, see the relative section of the “S5U1C17001C Manual”.

3. Connecting to the target
Connect the ICDmini and target CPU board, or SVT17702 to the PC.

4. Loading the program.
Load the “sample” project by using the IDE.
* For the program loading procedure, see the relative section of the “S5U1C17001C Manual”.

5. Executing the program
Run the program by resetting the target CPU board or by performing others.
* Because you cannot erase the sector data with the GDB, the display data cannot be modified.

<Notes>

 The sample program assumes use of SVT17702 so that the updating result is shown.
 The sample program modifies the flash memory data each time the program is executed.

When you include it in the actual application program, set a trigger or others as may be necessary.
 For the LCD control, see the relative section of the “S1C17702 LCD Driver Application Note”.

3. SOFTWARE DESCRIPTION

22 EPSON S1C17702 Self-Modifying Programming (FLS)
Application Note (Rev.1.0)

<APPENDIX 2> How to Debug the Sector Erase

As described previously, the sectors data in S1C17702 built-in flash memory cannot be erased with the

debugger. The sector data erase via the self-modifying must therefore be executed without the debugger, for
example by resetting the target. However, this method does not allow the debugger to check operation after the
erase. When you must debug operation after the erase, therefore, the procedure described in the following helps
make the debugging process efficient.

<Preliminary preparation for debugging>

Insert asm(“brk”) into source codes using the inline assembler, at the position from which you want to resume
the debug process after erasing data in the flash memory.

<Debugging procedures>

1. Download the program via the debugger.
Download the program embedded with asm (“brk”).

2. “Continue” the program with the debugger.
Execute the program from the debugger. Sector data cannot be erased at this step.

3. Reset the target under the “continue” state.
Be sure to reset the target while the program is running.
The program executed (free run) after the reset can erase sector data.

4. Wait until the program breaks at “asm (“brk”)” the position defined at the previous step.

The program breaks when the embedded asm (“brk”) starts to run.

5. Execute “set $pc=$pc+2” from console of the debugger.
In order to resume the debugger, the pc value must be incremented by 2.
* In GNU17 v.1.2.0 or later version, the pc value is automatically incremented by 2.

6. Resume the debugger.
Proceed with usual debugging processes thereafter.

Connection with the debugger is temporarily disconnected at Step 3. The program disconnected from the
debugger proceeds to the sector data erase step and then breaks at the point embedded with asm (“brk”).
When the program breaks, the debugger loads debugging information of the program again and displays it on
the debugger. Lastly resume the debugging process after making sure that the erasing sector data has been
completed.

<Notes>

・ Be sure to reset the target while the program is running.
・ After the program has broken at the asm (“brk”) point, it breaks again even if it is started from the debugger

unless its pc value is set to +2. Therefore, be sure to set the pc value to +2 as shown in Step 5 from the
console or the register pane. Registering this step with a user command button of the debugger allows for
an efficient debugging.

・ The asm(“brk”) instruction should not be left in the final source codes. We recommend you use #indef or
others to configure that the instruction is inserted only during the debug process.

0REVISION HISTORY

S1C17702 Self-Modifying Programming (FLS) EPSON 23
Application Note (Rev.1.0)

REVISION HISTORY

Date Revision Modification Notes
09/02/09 1.0 New issue

 International Sales Operations

AMERICA
EPSON ELECTRONICS AMERICA, INC.
2580 Orchard Parkway,
San Jose, CA 95131, USA
Phone: +1-800-228-3964 FAX: +1-408-922-0238

EUROPE
EPSON EUROPE ELECTRONICS GmbH
Riesstrasse 15, 80992 Munich,
GERMANY
Phone: +49-89-14005-0 FAX: +49-89-14005-110

ASIA
EPSON (CHINA) CO., LTD.
7F, Jinbao Bldg., No.89 Jinbao St.,
Dongcheng District,
Beijing 100005, CHINA
Phone: +86-10-6410-6655 FAX: +86-10-6410-7320

SHANGHAI BRANCH

7F, Block B, Hi-Tech Bldg., 900 Yishan Road,
Shanghai 200233, CHINA
Phone: +86-21-5423-5522 FAX: +86-21-5423-5512

SHENZHEN BRANCH
12F, Dawning Mansion, Keji South 12th Road,
Hi-Tech Park, Shenzhen 518057, CHINA
Phone: +86-755-2699-3828 FAX: +86-755-2699-3838

EPSON HONG KONG LTD.
20/F, Harbour Centre, 25 Harbour Road,
Wanchai, Hong Kong
Phone: +852-2585-4600 FAX: +852-2827-4346
Telex: 65542 EPSCO HX

EPSON TAIWAN TECHNOLOGY & TRADING LTD.
14F, No. 7, Song Ren Road,
Taipei 110, TAIWAN
Phone: +886-2-8786-6688 FAX: +886-2-8786-6660

EPSON SINGAPORE PTE., LTD.
1 HarbourFront Place,
#03-02 HarbourFront Tower One, Singapore 098633
Phone: +65-6586-5500 FAX: +65-6271-3182

SEIKO EPSON CORP.
KOREA OFFICE
50F, KLI 63 Bldg., 60 Yoido-dong,
Youngdeungpo-Ku, Seoul 150-763, KOREA
Phone: +82-2-784-6027 FAX: +82-2-767-3677

SEIKO EPSON CORP.
SEMICONDUCTOR OPERATIONS DIVISION

IC Sales Dept.
IC International Sales Group
421-8, Hino, Hino-shi, Tokyo 191-8501, JAPAN
Phone: +81-42-587-5814 FAX: +81-42-587-5117

Document Code: 411700400
First Issue April 2009 in JAPAN ○H

	1. SPECIFICATIONS
	2. FLASH MEMORY SPECIFICATIONS
	2.1 Flash Memory Control
	2.2 Functional Description
	2.3 Usage

	3. SOFTWARE DESCRIPTION
	3.1 Folder configuration
	3.2 File Configuration
	3.3 Global Variable
	3.4 Control registers
	3.5 Error Code Definition
	3.6 Detailed Description of Flash Memory Data Erase/Write Driver
	3.7 Header Definitions
	<APPENDIX 1> Sample Program
	<APPENDIX 2> How to Debug the Sector Erase

	REVISION HISTORY

