

SPXO

SG7050CCN

SEIKO EPSON CORPORATION

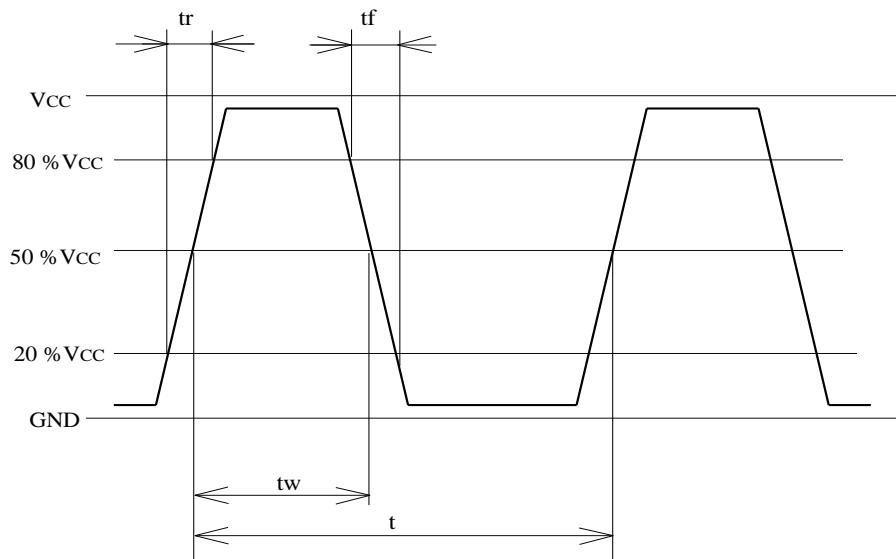
Product name SG7050CCN 11.059200 MHz HJGA
 Product Number / Ordering code X1G0045010005xx

Please refer to the 8.Packing information about xx (last 2 digits)

Output waveform CMOS

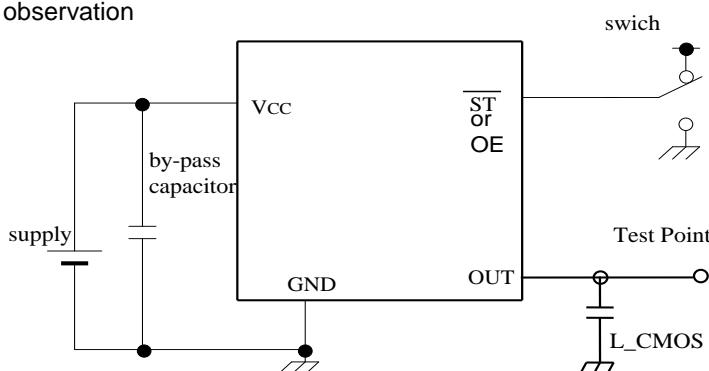
Pb free / Complies with EU RoHS directive

Reference weight Typ. 147 mg

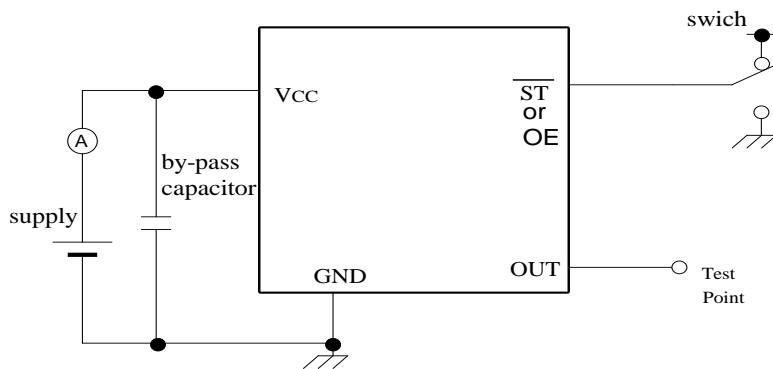

1. Absolute maximum ratings

Parameter	Symbol	Min.	Typ.	Max.	Unit	Conditions / Remarks
Maximum supply voltage	Vcc-GND	-0.3	-	+7	V	-
Storage temperature	T_stg	-40	-	+125	°C	Storage as single product
Input voltage	Vin	-0.5	-	Vcc+0.5	V	OE terminal

2. Specifications(characteristics)


Parameter	Symbol	Min.	Typ.	Max.	Unit	Conditions / Remarks
Output frequency	f0		11.059200		MHz	
Supply voltage	Vcc	4.5	5	5.5	V	-
Operating temperature	T_use	-40	-	+85	°C	-
Frequency tolerance	f_tol	-50	-	50	$\times 10^{-6}$	T_use
Current consumption	Icc	-	-	20	mA	No load condition
Stand-by current	I_std	-	-	-	µA	-
Disable current	I_dis	-	-	10.0	mA	OE = GND
Symmetry	SYM	40	-	60	%	50% Vcc Level L_CMOS=<50pF
Output voltage	V _{OH}	Vcc-0.4	-	-		-
	V _{OL}	-	-	0.4		-
Output load condition	L_CMOS	-	-	50	pF	CMOS Load
Input voltage	V _{IH}	0.8Vcc	-	-		OE terminal
	V _{IL}	-	-	0.2Vcc		OE terminal
Rise time	t _r	-	-	5	ns	0.2Vcc to 0.8Vcc Level, L_CMOS=50pF
Fall time	t _f	-	-	5	ns	0.2Vcc to 0.8Vcc Level, L_CMOS=50pF
Start-up time	t _{str}	-	-	4	ms	t = 0 at 0.9Vcc
Jitter	t _{DJ}	-	-	-	ps	Deterministic Jitter
	t _{RJ}	-	-	-	ps	Random Jitter
	t _{RMS}	-	-	-	ps	σ (RMS of total distribution)
	t _{p-p}	-	-	-	ps	Peak to Peak
	t _{acc}	-	-	-	ps	Accumulated Jitter(σ), n = 2 to 50 000 cycles
Phase jitter	t _{PJ}	-	-	-	ps	Offset Frequency: 12 kHz to 20 MHz
Phase noise	L(f)	-	-	-	dBc/Hz	Offset 1 Hz
		-	-	-	dBc/Hz	Offset 10 Hz
		-	-	-	dBc/Hz	Offset 100 Hz
		-	-	-	dBc/Hz	Offset 1 kHz
		-	-	-	dBc/Hz	Offset 10 kHz, Vcc = 3.3 V
		-	-	-	dBc/Hz	Offset 100 kHz
		-	-	-	dBc/Hz	Offset 1 MHz
Frequency aging	f_age	-5	-	5	$\times 10^{-6}$	@+25°C first year
		-	-	-		-

3.Timing chart

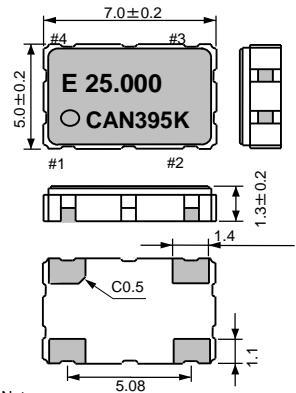


4.Test circuit

1) Waveform observation

2) Current consumption

*Current consumption under the disable function should be = GND.


3) Condition

(1) Oscilloscope

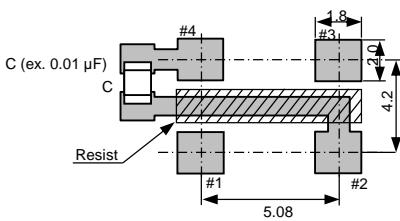
- Band width should be minimum 5 times higher (wider) than measurement frequency.
- Probe earth should be placed closely from test point and lead length should be as short as possible
- * Recommendable to use miniature socket. (Don't use earth lead.)
- (2) L_CMOS also includes probe capacitance.
- (3) By-pass capacitor (0.01 μ F to 0.1 μ F) is placed closely between VCC and GND.
- (4) Use the current meter whose internal impedance value is small.
- (5) Power supply
 - Start up time (0 %VCC to 90 %VCC) of power source should be more than 150 μ s.
 - Impedance of power supply should be as lowest as possible.

5.External dimensions

(Unit: mm)

Note.

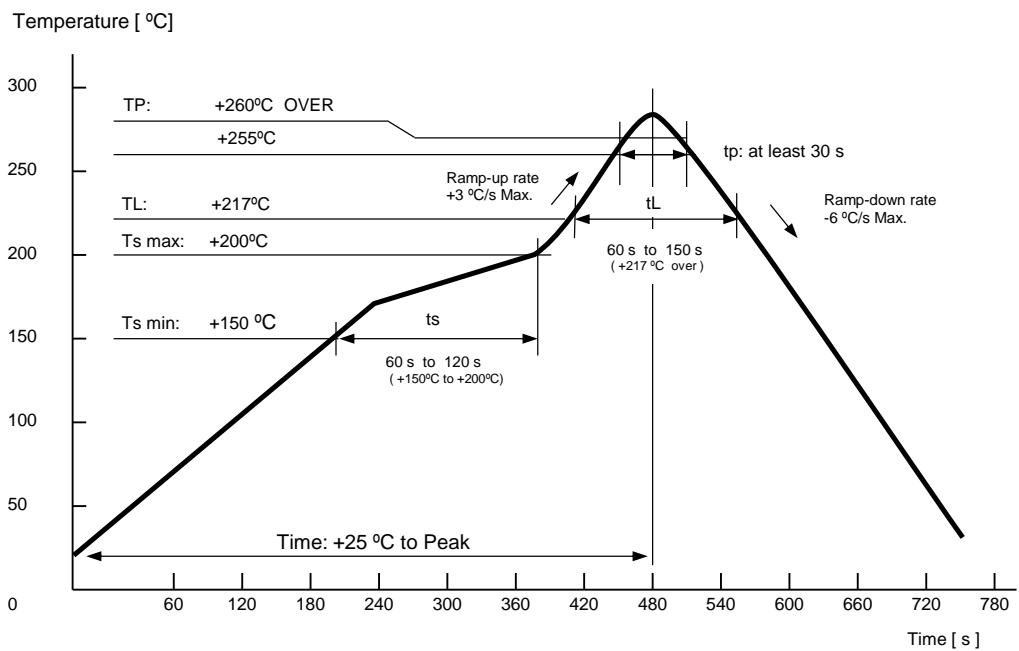
OE pin = "H" or "open" : Specified frequency output.


OE pin = "L" : Output is high impedance.

ST pin = "H" or "open" : Specified frequency output.

ST pin = "L" : Output is high impedance, oscillation stops.

6.Footprint(Recommended)


(Unit: mm)

To maintain stable operation, provide a 0.01uF to 0.1uF by-pass capacitor at a location as near as possible to the power source terminal of the crystal product (between Vcc - GND).

7.Reflow profile

Reflow condition (Follow of JEDEC STD-020D.1)

8.Packing information

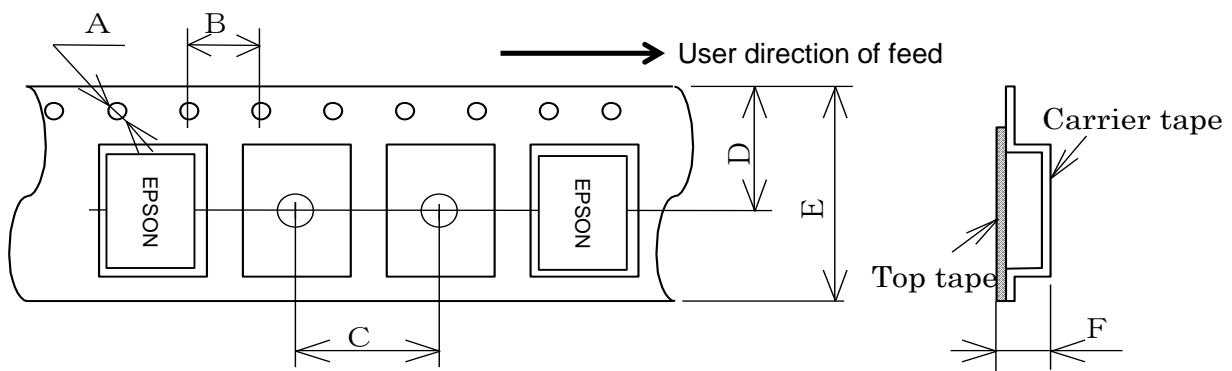
[1]Product number last 2 digits code(xx) description

The recommended code is "00"

X1G0045010005xx

Code	Condition	Code	Condition
01	Any Q'ty vinyl bag(Tape cut)	13	500pcs / Reel
11	Any Q'ty / Reel	00	1000pcs / Reel
12	250pcs / Reel		

[2] Taping specification

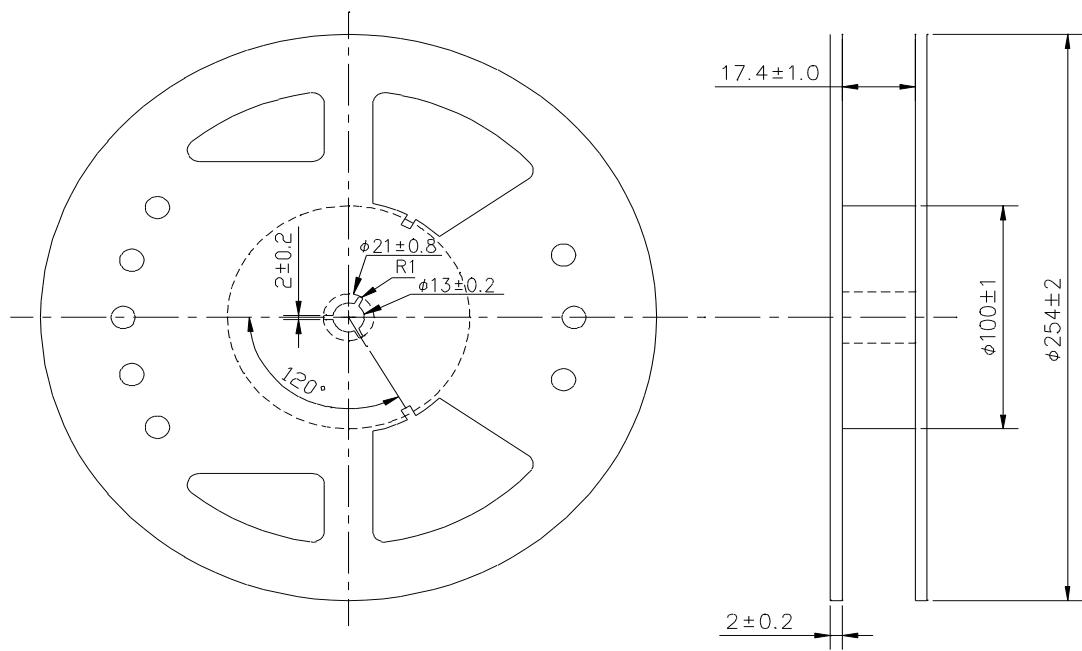

Subject to EIA-481 & IEC-60286

(1) Tape dimensions

Material of the Carrier Tape : PS

Material of the Top Tape : PET+PE

Unit: mm



Symbol	A	B	C	D	E	F
Value	φ1.5	4	8	9.25	16	2.3

(2) Reel dimensions

Center material : PS

Material of the Reel : PS

9. Notice

NOTICE: PLEASE READ CAREFULLY BELOW BEFORE THE USE OF THIS DOCUMENT

1. The content of this document is subject to change without notice. Before purchasing or using Epson products, please contact with sales representative of Seiko Epson Corporation ("Epson") for the latest information and be always sure to check the latest information published on Epson's official web sites and resources.
2. This document may not be copied, reproduced, or used for any other purposes, in whole or in part, without Epson's prior consent.
3. Information provided in this document including, but not limited to application circuits, programs and usage, is for reference purpose only. Epson makes no guarantees against any infringements or damages to any third parties' intellectual property rights or any other rights resulting from the information. This document does not grant you any licenses, any intellectual property rights or any other rights with respect to Epson products owned by Epson or any third parties.
4. Epson has prepared this document carefully to be accurate and dependable, but Epson does not guarantee that the information is always accurate and complete. Epson assumes no responsibility for any damages you incurred due to any misinformation in this document.
5. Epson products listed in this document and our associated technologies shall not be used in any equipment or systems that laws and regulations in Japan or any other countries prohibit to manufacture, use or sell. Furthermore, Epson products and our associated technologies shall not be used for the purposes of military weapons development (e.g. mass destruction weapons), military use, or any other military applications. If exporting Epson products or our associated technologies, please be sure to comply with the Foreign Exchange and Foreign Trade Control Act in Japan, Export Administration Regulations in the U.S.A (EAR) and other export-related laws and regulations in Japan and any other countries and to follow their required procedures.
6. Epson assumes no responsibility for any damages (whether direct or indirect) caused by or in relation with your non-compliance with the terms and conditions in this document or for any damages (whether direct or indirect) incurred by any third party that you give, transfer or assign Epson products.
7. For more details or other concerns about this document, please contact our sales representative.
8. Company names and product names listed in this document are trademarks or registered trademarks of their respective companies.

● Disclaimer

1. Epson products are designed for use in general electronic equipment applications that do not require extremely high reliability or safety.
2. Epson does not represent or warrant that its products will not cause a failure for any particular application, except for cases where the failure is a direct result caused by defects in materials and workmanship of this product.
If a product fails due to defects in materials and workmanship, to the maximum extent permitted by law, we will, at our sole discretion, refund or replace the affected product.
3. When products are used directly or indirectly in certain devices or applications (ex. Nuclear power, aerospace, infrastructure facilities, medical equipment, etc.) which are connected to or affect safety of human life or property, Customer is solely responsible for determining if the products and respective specifications are suitable for the intended use in particular customer applications.
Customer shall implement necessary and proper safety design and measures (including redundant design, malfunction prevention design, etc.) to ensure reliability and safety before using the products in/with customer's Equipment.
4. No dismantling, analysis, reverse engineering, modification, alteration, adaptation, reproduction, etc., of Epson products is allowed.
Furthermore, any defects caused by this are not covered by the warranty.

©Seiko Epson Corporation 2025